Sulfur Respiration in a Marine Chemolithoautotrophic Beggiatoa Strain

نویسندگان

  • Anne Schwedt
  • Anne-Christin Kreutzmann
  • Lubos Polerecky
  • Heide N. Schulz-Vogt
چکیده

The chemolithoautotrophic strain Beggiatoa sp. 35Flor shows an unusual migration behavior when cultivated in a gradient medium under high sulfide fluxes. As common for Beggiatoa spp., the filaments form a mat at the oxygen-sulfide interface. However, upon prolonged incubation, a subpopulation migrates actively downward into the anoxic and sulfidic section of the medium, where the filaments become gradually depleted in their sulfur and polyhydroxyalkanoates (PHA) inclusions. This depletion is correlated with the production of hydrogen sulfide. The sulfur- and PHA-depleted filaments return to the oxygen-sulfide interface, where they switch back to depositing sulfur and PHA by aerobic sulfide oxidation. Based on these observations we conclude that internally stored elemental sulfur is respired at the expense of stored PHA under anoxic conditions. Until now, nitrate has always been assumed to be the alternative electron acceptor in chemolithoautotrophic Beggiatoa spp. under anoxic conditions. As the medium and the filaments were free of oxidized nitrogen compounds we can exclude this metabolism. Furthermore, sulfur respiration with PHA under anoxic conditions has so far only been described for heterotrophic Beggiatoa spp., but our medium did not contain accessible organic carbon. Hence the PHA inclusions must originate from atmospheric CO(2) fixed by the filaments while at the oxygen-sulfide interface. We propose that the directed migration of filaments into the anoxic section of an oxygen-sulfide gradient system is used as a last resort to preserve cell integrity, which would otherwise be compromised by excessive sulfur deposition occurring in the presence of oxygen and high sulfide fluxes. The regulating mechanism of this migration is still unknown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain

UNLABELLED A chemolithoautotrophic strain of the family Beggiatoaceae, Beggiatoa sp. strain 35Flor, was found to oxidize molecular hydrogen when grown in a medium with diffusional gradients of oxygen, sulfide, and hydrogen. Microsensor profiles and rate measurements suggested that the strain oxidized hydrogen aerobically when oxygen was available, while hydrogen consumption under anoxic conditi...

متن کامل

Insights into the Genome of Large Sulfur Bacteria Revealed by Analysis of Single Filaments

Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical importance, little is known about their genetic repertoire because of the lack of pure cultures. Here...

متن کامل

Complete Genome Sequence of the Freshwater Colorless Sulfur Bacterium Beggiatoa leptomitiformis Neotype Strain D-402T

In this report, we announce the availability of a complete closed genome sequence and methylome analysis of Beggiatoa leptomitiformis neotype strain D-402(T) (DSM 14946, UNIQEM U 779).

متن کامل

Isolation and characterization of an obligately chemolithoautotrophic Halothiobacillus strain capable of growth on thiocyanate as an energy source.

Molecular and microbiological analysis of a laboratory bioreactor biomass oxidizing thiocyanate at autotrophic conditions and at 1 M NaCl showed a domination of a single chemolithoautotrophic sulfur-oxidizing bacterium (SOB) capable of using thiocyanate as an energy source. The bacterium was isolated in pure cultures and identified as a member of the Halothiobacillus halophilus/hydrothermalis c...

متن کامل

Genome Sequence of Hydrogenovibrio sp. Strain SC-1, a Chemolithoautotrophic Sulfur and Iron Oxidizer

Hydrogenovibrio sp. strain SC-1 was isolated from pyrrhotite incubated in situ in the marine surface sediment of Catalina Island, CA. Strain SC-1 has demonstrated autotrophic growth through the oxidation of thiosulfate and iron. Here, we present the 2.45-Mb genome sequence of SC-1, which contains 2,262 protein-coding genes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011